

Why randomized?

- A guaranteed error probability of 10^{-100} is as good as a deterministic algorithm. (Probability of hardware failure is larger!)
- Randomized algorithms can be more efficient and/or conceptually simpler.
- Can be the first step towards a deterministic algorithm.

Polynomial-time vs. FPT randomization

Polynomial-time randomized algorithms

- Randomized selection to pick a typical, unproblematic, average element/subset.
- Success probability is constant or at most polynomially small.

Randomized FPT algorithms

- Randomized selection to satisfy a bounded number of (unknown) constraints.
- Success probability might be exponentially small.

Randomization as reduction

Problem A (what we want to solve)

Randomized magic

Problem B (what we can solve)

k-PATH

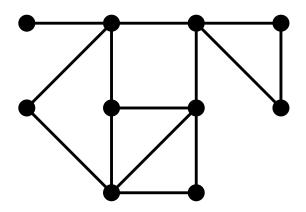
Input: A graph G, integer k.

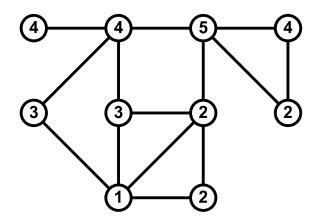
Find: A simple path on k vertices.

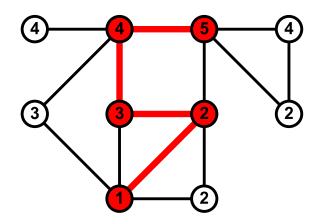
Note: The problem is clearly NP-hard, as it contains the HAMILTONIAN PATH problem.

Theorem

k-PATH can be solved in time $2^{O(k)} \cdot n^{O(1)}$.







- Check if there is a path colored $1 2 \cdots k$; output "YES" or "NO".
 - If there is no k-path: no path colored $1 2 \cdots k$ exists \Rightarrow "NO".
 - If there is a k-path: the probability that such a path is colored $1-2-\cdots-k$ is k^{-k} thus the algorithm outputs "YES" with at least that probability.

Error probability

Useful fact

If the probability of success is at least p, then the probability that the algorithm does not say "YES" after 1/p repetitions is at most

$$(1-p)^{1/p} < (e^{-p})^{1/p} = 1/e \approx 0.38$$

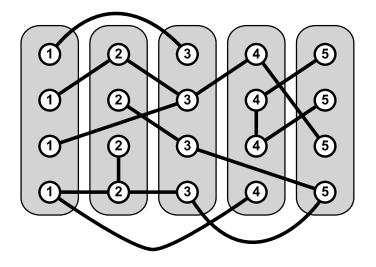
Error probability

Useful fact

If the probability of success is at least p, then the probability that the algorithm does not say "YES" after 1/p repetitions is at most

$$(1-p)^{1/p} < (e^{-p})^{1/p} = 1/e \approx 0.38$$

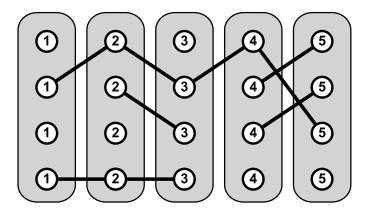
- Thus if $p > k^{-k}$, then error probability is at most 1/e after k^k repetitions.
- Repeating the whole algorithm a constant number of times can make the error probability an arbitrary small constant.
- For example, by trying $100 \cdot k^k$ random colorings, the probability of a wrong answer is at most $1/e^{100}$.



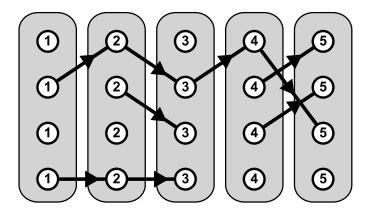
- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.



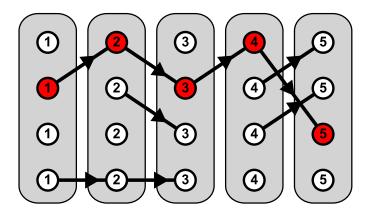
- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.



- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.



- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.



- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.

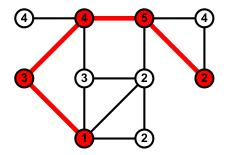
k-PATH

Color Coding success probability: k^{-k}

Finding a $1-2-\cdots-k \text{ colored}$ path

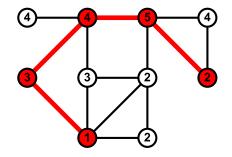
polynomial-time solvable

• Assign colors from [k] to vertices V(G) uniformly and independently at random.



• Check if there is a **colorful** path where each color appears exactly once on the vertices; output "YES" or "NO".

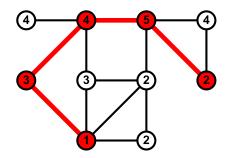
• Assign colors from [k] to vertices V(G) uniformly and independently at random.



- Check if there is a **colorful** path where each color appears exactly once on the vertices; output "YES" or "NO".
 - If there is no k-path: no **colorful** path exists \Rightarrow "NO".
 - If there is a k-path: the probability that it is **colorful** is

$$\frac{k!}{k^k} > \frac{\left(\frac{k}{e}\right)^k}{k^k} = e^{-k},$$

thus the algorithm outputs "YES" with at least that probability.



- Repeating the algorithm $100e^k$ times decreases the error probability to e^{-100} . How to find a colorful path?
 - Try all permutations $(k! \cdot n^{O(1)})$ time
 - Dynamic programming $(2^k \cdot n^{O(1)})$ time

Finding a colorful path

Subproblems:

We introduce $2^k \cdot |V(G)|$ Boolean variables:

$$x(v, C) = \mathsf{TRUE} \; \mathsf{for} \; \mathsf{some} \; v \in V(G) \; \mathsf{and} \; C \subseteq [k]$$

There is a path P ending at v such that each color in C appears on P exactly once and no other color appears.

Answer:

There is a colorful path $\iff x(v,[k]) = \mathsf{TRUE}$ for some vertex v.

Finding a colorful path

Subproblems:

We introduce $2^k \cdot |V(G)|$ Boolean variables:

$$x(v, C) = \mathsf{TRUE} \; \mathsf{for \; some} \; v \in V(G) \; \mathsf{and} \; C \subseteq [k]$$

There is a path P ending at v such that each color in C appears on P exactly once and no other color appears.

Initialization:

For every v with color r, $x(v, \{r\}) = TRUE$.

Recurrence:

For every v with color r and set $C \subseteq [k]$

$$x(v,C) = \bigvee_{u \in N(v)} x(u,C \setminus \{r\}).$$

<mark>k</mark>-PATH

Color Coding success probability: e^{-k}

Finding a colorful path

Solvable in time $2^k \cdot n^{O(1)}$

Derandomization

Definition

A family \mathcal{H} of functions $[n] \to [k]$ is a k-perfect family of hash functions if for every $S \subseteq [n]$ with |S| = k, there is an $h \in \mathcal{H}$ such that $h(x) \neq h(y)$ for any $x, y \in S$, $x \neq y$.

Theorem

There is a k-perfect family of functions $[n] \to [k]$ having size $2^{O(k)} \log n$ (and can be constructed in time polynomial in the size of the family).

Derandomization

Definition

A family \mathcal{H} of functions $[n] \to [k]$ is a k-perfect family of hash functions if for every $S \subseteq [n]$ with |S| = k, there is an $h \in \mathcal{H}$ such that $h(x) \neq h(y)$ for any $x, y \in S$, $x \neq y$.

Theorem

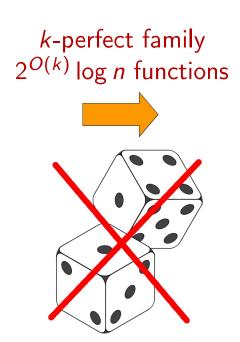
There is a k-perfect family of functions $[n] \to [k]$ having size $2^{O(k)} \log n$ (and can be constructed in time polynomial in the size of the family).

Instead of trying $O(e^k)$ random colorings, we go through a k-perfect family \mathcal{H} of functions $V(G) \to [k]$.

If there is a solution *S*

- \Rightarrow The vertices of S are colorful for at least one $h \in \mathcal{H}$
- ⇒ Algorithm outputs "YES".
- \Rightarrow k-PATH can be solved in **deterministic** time $2^{O(k)} \cdot n^{O(1)}$.

Derandomized Color Coding



Finding a colorful path

Solvable in time $2^k \cdot n^{O(1)}$